Continuous operators on Hilbert spaces

نویسنده

  • Paul Garrett
چکیده

Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most closely imitate finite-dimensional operator theory. In addition, compact operators are important in practice. We prove a spectral theorem for self-adjoint compact operators, which does not use broader discussions of properties of spectra, only using the Cauchy-Schwarz-Bunyakowsky inequality and the definition of selfadjoint compact operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

Some Properties of Continuous $K$-frames in Hilbert Spaces

The theory of  continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory.  The $K$-frames were  introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of  $K$-frames, there are many differences between...

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces

We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^*‎ , ‎C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic‎.

متن کامل

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014